Abstract

We studied the regulation of lipid body biogenesis in the oleaginous fungus Mortierella ramanniana var. angulispora by investigating culture conditions to modulate lipid body size, which we found was affected by the carbon-to-nitrogen ratio (C/N ratio) in the culture medium. Increasing the nitrogen source or decreasing the C/N ratio from 38 to 9 induced the appearance of lipid bodies with diameters less than 2-3 micro m, which are usually found at a C/N ratio of 38 in this fungus. To determine factors regulating lipid body size, we compared lipid body fractions from fungal cells cultured at different C/N ratios. We found some differences in polypeptide profiles between lipid body fractions from fungal cells cultured at different C/N ratios for 2 days when the lipid bodies were enlarged at a C/N ratio of 38. We then compared the phosphorylation of lipid body proteins, since protein phosphorylation plays a pivotal role in various aspects of signal transduction. In vitro phosphorylation in the lipid body fraction indicated that protein kinase activity toward endogenous and exogenous substrates such as histone IIIS, VIIS, and myelin basic protein increased in the lipid body fraction at a C/N ratio of 9. Further analysis by in-gel protein kinase assay indicated the presence of at least three activated protein kinases with molecular masses of 75, 72, and 42 kDa, which were also autophosphorylated. These results indicate the presence of nutrient-regulated protein kinases and increased phosphorylation in lipid bodies, which correlate with the appearance of smaller lipid bodies in this fungus. Further studies to characterize these protein kinases at the molecular level should provide new insights into the link between nutrient sensing and lipid storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call