Abstract

Injection of wheat-germ agglutinin-horseradish peroxidase conjugate (WGA-HRP) into the superior cervical ganglion (SCG) of the rat results in accumulation of WGA-HRP in sympathetic postganglionic neurons in the contralateral SCG. The sympathetic pathways involved and the mechanism underlying the labeling were investigated. The labeling in neurons in the contralateral SCG was apparent 6 h after injection and increased in intensity with longer survival times. The number of labeled neurons reached 1300 at 72 h after the injection. Transection of the external (ECN) or internal carotid nerves (ICN) resulted in considerable reduction in the number of labeled neurons. Combined transection of both ECN and ICN virtually eliminated labeling in the contralateral SCG. This provides strong evidence that these two nerves are the major pathways for WGA-HRP transport out of the SCG. No labeling was observed in the contralateral SCG following injection of horseradish peroxidase (HRP). Therefore, it seems unlikely that a direct nerve connection exists between the bilateral ganglia. Instead, the labeling of contralateral SCG neurons appears to depend on the transneuronal transport capacity of WGA-HRP, which conveys the marker in an anterograde direction along the postganglionic fibers to terminals in sympathetic target organs, and then delivers it transneuronally to contralateral SCG neurons. We suggest that the sympathetic nerve fibers originating in the bilateral SCGs run intermingled and are in close contact in their peripheral target organs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call