Abstract
The current noise of a voltage biased interacting quantum wire adiabatically connected to metallic leads is computed in the presence of an impurity in the wire. We find that in the weak backscattering limit the Fano factor characterizing the ratio between noise and backscattered current crucially depends on the noise frequency omega relative to the ballistic frequency vF/gL, where vF is the Fermi velocity, g is the Luttinger liquid interaction parameter, and L is the length of the wire. In contrast to chiral Luttinger liquids the noise is not only due to the Poissonian backscattering of fractionally charged quasiparticles at the impurity, but it also depends on Andreev-type reflections at the contacts, so that the frequency dependence of the noise needs to be analyzed to extract the fractional charge e*=eg of the bulk excitations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.