Abstract
The fundamental properties of lead halide perovskites, rivaling those of conventional semiconductors, make these systems attractive not just for solar cells but also for a broader playground of energy and nanotechnology applications. The recently measured ultralow thermal conductivity of the perovskites suggests the possibility of high thermoelectric efficiency and the possible use of the perovskites for solar-thermoelectric generation capable to capture both above-gap and below-gap sun illumination. Here we explore this possibility presenting a theoretical analysis of the thermoelectric behavior of CH3NH3PbI3 for a wide range of temperatures and carrier concentrations. For electron doping, we find optimal carrier density n ∼ 1019 cm–3, at which this material displays room-T power factor σS2 ∼ 0.8 × 10–3 W/mK2, derived by moderate electrical conductivity σ and robust thermopower, with Seebeck coefficient S of approximately hundreds of μV/K, typical of polar insulating perovskites. In combination with a me...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.