Abstract

We consider the superfluid phase of a specific renormalizable relativistic quantum field theory. We prove that, within the regime of validity of perturbation theory and of the superfluid effective theory, there are consistent and regular vortex solutions where the superfluid’s velocity field as traditionally defined smoothly interpolates between zero and arbitrarily large superluminal values. We show that this solution is free of instabilities and of superluminal excitations. We show that, in contrast, a generic vortex solution for an ordinary fluid does develop an instability if the velocity field becomes superluminal. All this questions the characterization of a superfluid velocity field as the actual velocity of “something”.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call