Abstract
The description of weakly nonlinear water-wave evolution over a horizontal bottom by the integro-differential Zakharov equation, because of utilising the underlying Hamiltonian structure, has many advantages over direct use of the Euler equations. However, its application to finite-depth situations is not straightforward since, in contrast to the deep-water case, the kernels governing the four-wave interactions are singular, as well as the kernels in the canonical transformation that removes non-resonant interactions from the original equations of motion. At the singularities, these kernels are finite but not unique. The issue of how to use the Zakharov equation for finite depth and whether it is possible at all was debated intensely in the literature for decades but remains outstanding. Here we show that the absence of a limit of the kernels at the singularities is inconsequential, since in the equations of motion it is only the integral that matters. By applying the definition of the Dirac- $\delta$ , we show that all the integrals involving a trivial manifold singularity are evaluated uniquely. Therefore, the Zakharov evolution equation and the nonlinear canonical transformation are only apparently singular. The findings are validated by application to examples where predictions based on the Zakharov equation are compared with known solutions obtained from the Euler equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.