Abstract
Methanol dehydrogenase activity, when assayed with phenazine ethosulfate (PES) as an electron acceptor, was inhibited by superoxide dismutase (SOD) and by Mn2+ only under aerobic conditions. Catalase, formate, and other divalent cations did not inhibit the enzyme. The enzyme also exhibited significantly higher levels of activity when assayed with PES under anaerobic conditions relative to aerobic conditions. The oxygen- and superoxide-dependent effects on methanol dehydrogenase were not observed when either Wurster's Blue or cytochrome c-55li was used as an electron acceptor. Another quinoprotein, methylamine dehydrogenase, which possesses tryptophan tryptophylquinone (TTQ) rather than pyrroloquinoline quinone (PQQ) as a prosthetic group, was not inhibited by SOD or Mn2+ when assayed with PES as an electron acceptor. Spectroscopic analysis of methanol dehydrogenase provided no evidence for any oxygen- or superoxide-dependent changes in the redox state of the enzyme-bound PQQ cofactor of methanol dehydrogenase. To explain these data, a model is presented in which this cofactor reacts reversibly with oxygen and superoxide, and in which oxygen is able to compete with PES as an electron acceptor for the reduced species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.