Abstract

Lithium bis(trifluoromethylsulfone)imide (LiTFSI) is a promising electrolyte for high-energy lithium batteries due to its high solubility in most solvents and electrochemical stability. To characterize this electrolyte in solution, its conductance and apparent molar volume and heat capacity were measured over a wide range of concentration in glymes, tetraethylsulfamide (TESA), acetonitrile, γ-butyrolactone, and propylene carbonate at 25°C and were compared with those of LiClO4 in the same solvents. The glymes or n(ethylene glycol) dimethyl ethers (nEGDME), which have the chemical structure CH3−O−(CH2−CH2−O) n −CH3 for n = 1 to 4, are particularly interesting since they are electrochemically stable, have a good redox window, and are analogs of the polyethylene oxides used in polymer-electrolyte batteries. TESA is a good plasticizer for polymer-electrolyte batteries. Whenever required, the following properties of the pure solvents were measured: compressibilities, expansibilities, temperature and pressure dependences of the dielectric constant, acceptor number, and donor number. These data were used in particular to calculate the limiting Debye-Huckel parameters for volumes and heat capacities. The infinite dilution properties of LiTFSI are quite similar to those of other lithium salts. At low concentrations, LiTFSI is strongly associated in the glymes and moderately associated in TESA. At intermediate concentrations, the thermodynamic data suggests that a stable solvate of LiTFSI in EGDME exists in the solution state. At high concentrations, the thermodynamic properties of the two lithium salts approach those of the molten salts. These salts have a reasonably high specific conductivity in most of the solvents. This suggests that the conductance of ions at high concentration in solvents of low dielectric constant is due to a charge transfer process rather than to the migration of free ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call