Abstract

Mass timber buildings are gaining increasing popularity as a sustainable alternative to concrete and steel structures. Mass timber panels, especially cross-laminated timber (CLT), are often used as floors due to their dry and fast construction. CLT has poor impact sound insulation performance due to its lightweight and relatively high bending stiffness. Floating concrete toppings are often applied to increase both the airborne and impact sound insulation performance. However, the impact sound insulation performance of floating concrete toppings on CLT structural floors is affected by both the concrete thickness and resilient interlayer. This study investigated the efficiency of both continuous and discrete floating floor assemblies through mock-up building tests using small-scale concrete toppings according to ASTM E1007-16. It was found that the improvements by continuous floating floor assemblies are dependent on the concrete thicknesses and dynamic stiffness of resilient interlayers. The improvements cannot be well predicted by the equations developed for concrete structural floors. The highest apparent impact sound insulation class (AIIC) achieved with continuous floating floor assemblies in this study was 53 dBA, while that of the discrete floating floor assemblies was up to 62 dBA. The discrete floating floor solution showed great potential for use in mass timber buildings due to the high performance with thinner concrete toppings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call