Abstract
We show that recent observations of fractal dimensions in the μ‐space of N‐body Hamiltonian systems with long‐range interactions are due to finite N and finite resolution effects. We provide strong numerical evidence that, in the continuum (Vlasov) limit, a set which initially is not a fractal (e.g., a line in 2D) remains such for all finite times. We perform this analysis for the Hamiltonian mean field (HMF) model, which describes the motion of a system of N fully coupled rotors. The analysis can be indirectly confirmed by studying the evolution of a large set of initial points for the Chirikov standard map.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.