Abstract
Dietary fats are converted into chylomicron triacylglycerols via the 2-monoacylglycerol and phosphatidic acid pathways of acylglycerol formation. In view of the known positional and fatty acid specificity of the acyltransferases, the triacylglycerol structures resulting from the two pathways would be expected to differ, but this has not been demonstrated. We have performed stereospecific analyses on the chylomicron triacylglycerols from rats fed menhaden oil and the corresponding fatty acid alkyl esters, which would be expected to be assimilated via the monoacylglycerol and the phosphatidic acid pathways, respectively. The results show a remarkable similarity between the two triacylglycerol types in the fatty acid composition of the sn-1 and sn-3 positions, along with marked differences in the composition of the sn-2 positions. The triacylglycerols from rats fed oil retained about 85% of the original fatty acids in the sn-2 position, including a high proportion of the long chain polyunsaturates (e.g., 5-7% 20:5 and 4-5% 22:6). The triacylglycerols from rats fed the alkyl ester contained large amounts of endogenous fatty acids in the sn-2 position (e.g., 18% 16:1, 14% 18:1, 14% 18:2, and 2.5% 20:4), which approximated the composition of the sn-2 position of the presumed phosphatidic acid intermediates. The sn-1 position contained a much higher proportion of polyunsatured fatty acids (e.g., 12-13% 20:5, 5-6% 22:6) than the sn-2 position (e.g. 2-3% 20:5, 0-0.6% 22:6) of triacylglycerols from rats fed the ester. We conclude that the chylomicron triacylglycerols arising via the 2-monoacylglycerol and the phosphatidic acid pathways differ mainly in the composition of the fatty acids in the sn-2 position. The similarity in the acids of the sn-1 and sn-3 positions of the chylomicron triacylglycerols from rats fed oil or ester is consistent with a hydrolysis of the acylglycerol products of the phosphatidic acid pathway to 2-monoacylglycerols prior to reconversion to triacylglycerols via the monoacylglycerol pathway and secretion as chylomicrons.
Highlights
Dietary fats are converted into chylomicron triacylglycerols via the 2-monoacylglycerol and phosphatidic acid pathways of acylglycerol formation
I t is well known that intestine is capable of assimilating dietary fat via phosphatidic acid [1] and monoacylglycerol [2] pathways of acylglycerol synthesis, which under normal conditions contribute about 20% and 80%, respectively, to the total chylomicron triacylglycerol formation
It has been estimated that a maximum of 15% of the hepatic triacylglycerols are Abbreviations: VLDL, very low density lipoproteins; TLC, thin-layer chromatography; GLC, gas-liquid chromatography; HPLC, high performance liquid chromatography
Summary
Dietary fats are converted into chylomicron triacylglycerols via the 2-monoacylglycerol and phosphatidic acid pathways of acylglycerol formation. We have performed stereospecific analyses on the chylomicron triacylglycerols from rats fed menhaden oil and the corresponding fatty acid alkyl esters, which would be expected to be assimilated via the monoacylglycerol and the phosphatidic acid pathways, respectively. The similarity in the acids of the sn-1 and sn-3 positions of the chylomicron triacylglycerols from rats fed oil or ester is consistent with a hydrolysis of the acylglycerol products of the phosphatidic acid pathway to 2-monoacylglycerols prior to reconversion to triacylglycerols via the monoacylglycerol pathway and secretion as chylomicrons.-Yang, L. If the lysosomal acid lipase responsible for the hydrolysis is inhibited by chloroquine, secretion of VLDL by hepatocytes is inhibited [14] It remains to be determined whether or not the triacylglycerol products of the phosphatidic acid pathway in the intestine are subject to a similar breakdown before secretion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.