Abstract

Accelerated cyclic aging tests are very important for research and industry to quickly characterize lithium-ion cells. However, the accentuation of stress factors and the elimination of rest periods lead to an apparent capacity fade, that can be subsequently recovered during a resting phase. This effect is attributed to the inhomogeneous lithium distribution in the anode and is observable with differential voltage analysis (DVA). We tested cylindrical 18,650 cells with Li(NixCoyAlz)O2-graphite/silicon chemistry during two cycling and resting phases. The capacity, the pulse resistance, the DVA, and the capacity difference analysis are evaluated for cells cycled at different average SOC and current rates. An apparent capacity loss of up to 12% was reported after 200 FCE for cells cycled under the presence of pressure gradients, while only 1% were at low-pressure gradients. The subsequent recovery was up to 80% of the apparent capacity loss in some cases. The impact of silicon cannot be estimated as it shows no features in the dV/dQ curves. We observe a recovery of apparent resistance increase, which is not reported for cells with pure graphite anodes. Finally, we demonstrate the strong impact of apparent aging for the lifetime prediction based on standard accelerated cyclic aging tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call