Abstract
Abstract We outline an experimental setup for efficiently preparing a tweezer array of $^{88}$Sr atoms. Our setup uses permanent magnets to maintain a steady-state two-dimensional magneto-optical trap (MOT) which results in a loading rate of up to $10^{8}$ s$^{-1}$ at 5 mK for the three-dimensional blue MOT. This enables us to trap $2\times10^{6}$ $^{88}$Sr atoms at 2 $\mu$K in a narrow-line red MOT with the $^{1}$S$_{0}$ $\rightarrow$ $^{3}$P$_{1}$ intercombination transition at 689 nm. With the Sisyphus cooling and pairwise loss processes, single atoms are trapped and imaged in 813 nm optical tweezers, exhibiting a lifetime of 2.5 minutes. We further investigate the survival fraction of a single atom in the tweezers and characterize the optical tweezer array using a release and recapture technique. Our experimental setup serves as an excellent reference for those engaged in experiments involving optical tweezer arrays, cold atom systems, and similar research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.