Abstract

Android users are now suffering severe threats from unwanted behaviors of various apps. The analysis of apps' audit logs is one of the essential methods for the security analysts of various companies to unveil the underlying maliciousness within apps. We propose and implement AppAngio, a novel system that reveals contextual information in Android app behaviors by API-level audit logs. Our goal is to help security analysts understand how the target apps worked and facilitate the identification of the maliciousness within apps. The key module of AppAngio is identifying the path matched with the logs on the app's control-flow graphs (CFGs). The challenge, however, is that the limited-quantity logs may incur high computational complexity in the log matching, where there are a large number of candidates caused by the coupling relation of successive logs. To address the challenge, we propose a divide and conquer strategy that precisely positions the nodes matched with log records on the corresponding CFGs and connects the nodes with as few backtracks as possible. Our experiments show that AppAngio reveals contextual information of behaviors in real-world apps. Moreover, the revealed results assist the analysts in identifying the maliciousness of app behaviors and complement existing analysis schemes. Meanwhile, AppAngio incurs negligible performance overhead on the real device in the experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.