Abstract

Inspired by the tactic organisms in Nature that can self-direct their movement following environmental stimulus gradient, we proposed a DNase functionalized Janus nanoparticle (JNP) nanomotor system for the first time, which can be powered by ultralow nM to μM levels of DNA. The system exhibited interesting chemotactic behavior toward a DNA richer area, which is physiologically related with many diseases including tumors. In the presence of the subtle DNA gradient generated by apoptotic tumor cells, the cargo loaded nanomotors were able to sense the DNA signal released by the cells and demonstrate directional motion toward tumor cells. For our system, the subtle DNA gradient by a small amount (10 μL) of tumor cells is sufficient to induce the chemotaxis behavior of self-navigating and self-targeting ability of our nanomotor system, which promises to shed new light for tumor diagnosis and therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call