Abstract

The potent parkinsonian neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) is known to cause dopaminergic neurodegeneration in nigrostriatal system. In the present study we investigated the nuclear morphology of cells in the substantia nigra pars compacta (SNpc) region of rats following unilateral intranigral infusion of the active metabolite, 1-methyl-4-phenyl pyridinium ion (MPP(+)), which resulted in a dose-dependent and prolonged dopamine depletion in the ipsilateral striatum. There appeared a substantial loss of tyrosine hydroxylase immunoreactive neurons in the SNpc that received the neurotoxin. Specific nuclear staining with Hoechst 33342 or acridine orange revealed bright pyknotic, shrunken, distorted nuclei and condensed chromatin with perinuclear nucleolus respectively following visualization with the former and latter dyes in the ipsilateral SNpc, as compared to the round, intact nuclei and centrally positioned nucleolus in the contralateral side. Ultrastructural details of the nucleus under transmission electron microscope confirmed distorted nuclear organization with shrunken or condensed nuclei and disrupted nuclear membrane. These features are typical of nucleus undergoing apoptosis, and suggest that MPP(+) causes dopaminergic neuronal death through an apoptotic mode. Typical laddering pattern of genomic DNA isolated from the ipsilateral SN in agarose gel electrophoresis conclusively established apoptosis following intranigral administration of MPP(+) in rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.