Abstract

We investigated the presence of low-molecular-weight iron and ferritin in human atheromas, and their possible relation to the apoptotic process. Arterial wall segments with fatty streaks were collected from coronary arteries and thoracic aortas of 12 clinical autopsy cases with general atherosclerosis. Normal appearing regions from the same cases together with normal coronary arteries from seven young forensic autopsy cases, without any sign of atherosclerosis, were used for comparison. Anti-CD68 (macrophage marker) and anti-ferritin antibodies were applied to serial sections of the arterial wall segments, fixed in formadehyde and embedded in paraffin wax, using an avidin-biotin complex (ABC) technique. Similarly, apoptotic cells were assayed by the TUNEL technique, while low-molecular-weight iron was cytochemically detected by autometallography. Cell counting and computerised image analysis were performed to compare the distribution of macrophages, ferritin- and iron-rich cells, and apoptotic cells in the intima, media, and adventitia of the arteries.Pronounced ferritin accumulation, occurrence of lysosomal low-molecular-weight iron, and apoptosis mainly concerned CD68-positive cells (macrophages) in the atherosclerotic lesions. No ferritin- or CD68-positivity was found in normal coronary arteries from the young forensic-autopsy cases, while a moderate number of such cells were observed in the intima of normal looking vessel areas from the control cases. In the intima, cytosolic ferritin and low-molecular-weight iron with a lysosomal type distribution were found in many CD68-positive macrophages which frequently were surrounded by erythrocytes. A substantial number of apoptotic cells within the intima, media, and adventitia were registered in all atherosclerotic lesions examined, although mainly in the vulnerable macrophage-enriched areas of the atheroma shoulder.We suggest that iron may occur within the cytosol, mainly bound in ferritin, but also in low-molecular weight, redox-active form within the acidic vacuolar apparatus of macrophages and macrophage-derived foam cells following erythrophagocytosis or phagocytosis of apoptotic cells. Low-molecular-weight iron within lysosomes, present due to degradation of iron-containing structures, such as ferritin, may partially become exocytosed and contribute to cell-mediated LDL-oxidation. Moreover, such lysosomal iron may also sensitise lysosomes to oxidative stress and induce apoptosis of macrophage/foam-cells that may result in instability and rupture of atherosclerotic plaques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call