Abstract

We have examined the relationship between chemotherapy-induced mitotic catastrophe and cell death by apoptosis in both wild-type and p53(−/−) HCT116 human colon carcinoma cells treated with nanomolar concentrations of paclitaxel (PTX), a drug that acts on tubulin altering the normal development of mitosis. After treatment, HCT116 cells entered mitosis regardless of the presence of functional p53, which resulted in changes in the distribution of cells in the different phases of the cell cycle, and in cell death. In the presence of PTX, the percentage of polyploid cells observed was higher in p53-deficient cells, indicating that mitotic slippage was favored compared to wild-type cells, with the presence of large multinucleate cells. PTX caused mitotic catastrophe and about 50–60% cells that were entering an aberrant mitosis died through an apoptotic-like pathway characterized by the presence of phosphatidylserine in the outer cell membrane, which occurred in the absence of significant activation of caspases. Lack of p53 facilitated endoreduplication and polyploidy in PTX-treated cells, but cells were still killed with similar efficacy through the same apoptotic-like mechanism in the absence of caspase activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.