Abstract

The research for innovative treatments against colon adenocarcinomas is still a great challenge. Acacia catechu Willd. heartwood extract (AC) has health-promoting qualities, especially at the gastrointestinal level. This study characterized AC for its catechins content and investigated the apoptosis-enhancing effect in human colorectal adenocarcinoma HT-29 cells, along with its ability to spare healthy tissue. MTT assay was used to describe the time course, concentration dependence and reversibility of AC-mediated cytotoxicity. Cell cycle analysis and AV-PI and DAPI-staining were performed to evaluate apoptosis, together with ROS formation, mitochondrial membrane potential (MMP) changes and caspase activities. Rat ileum and colon rings were tested for their viability and functionality to explore AC effects on healthy tissue. Quantitative analysis highlighted that AC was rich in (±)-catechin (31.5 ± 0.82 mg/g) and (−)-epicatechin (12.5 ± 0.42 mg/g). AC irreversibly decreased cell viability in a concentration-dependent, but not time-dependent fashion. Cytotoxicity was accompanied by increases in apoptotic cells and ROS, a reduction in MMP and increases in caspase-9 and 3 activities. AC did not affect rat ileum and colon rings’ viability and functionality, suggesting a safe profile toward healthy tissue. The present findings outline the potential of AC for colon cancer treatment.

Highlights

  • Colorectal cancer (CRC) is one of the most common causes of tumour deaths worldwide [1]

  • The decoction of Acacia catechu Willd. heartwood was characterized for its catechins content, assuming the most represented monomeric polyphenols as suitable phytomarkers for the herbal drug standardization [11,12]

  • Further characterization of the sample was carried out by means of a chiral method based on cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) which had previously shown the ability to resolve catechin enantiomers [15]

Read more

Summary

Introduction

Colorectal cancer (CRC) is one of the most common causes of tumour deaths worldwide [1]. In Europe, it is the second and the third most common form of cancer for women and men, respectively. Its occurrence and progression depend on multiple issues, among which family, age, gender and personal history constitute the major risk factors [2]. In the latter case, drugs induce DNA damage or initiate multiple signalling pathways, including cell cycle arrest, DNA repair, etc., leading to cancer cell death. The outcome of chemotherapeutic drugs in patients, is related to the cancer subtype, and often the effects of cytotoxicity, drug resistance and adverse reactions constitute overwhelming problems [3]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.