Abstract
To examine the clinical applicability of Pc 4, a promising second-generation photosensitizer, for the photodynamic treatment of lymphocyte-mediated skin diseases, we studied the A431 and Jurkat cell lines, commonly used as surrogates for human keratinocyte-derived carcinomas and lymphocytes, respectively. As revealed by ethyl acetate extraction and absorption spectrophotometry, uptake of Pc 4 into the two cell lines was linear with Pc 4 concentration and similar on a per cell basis but greater in Jurkat cells on a per mass basis. Flow cytometry showed that uptake was linear at low doses; variations in the dose-response for uptake measured by fluorescence supported differential aggregation of Pc 4 in the two cell types. As detected by confocal microscopy, Pc 4 localized to mitochondria and endoplasmic reticulum in both cell lines. Jurkat cells were much more sensitive to the lethal effects of phthalocyanine photodynamic therapy (Pc 4-PDT) than were A431 cells, as measured by a tetrazolium dye reduction assay, and more readily underwent morphological apoptosis. In a search for molecular factors to explain the greater photosensitivity of Jurkat cells, the fate of important Bcl-2 family members was monitored. Jurkat cells were more sensitive to the induction of immediate photodamage to Bcl-2, but the difference was insufficient to account fully for their greater sensitivity. The antiapoptotic protein Mcl-1 was extensively cleaved in a dose- and caspase-dependent manner in Jurkat, but not in A431, cells exposed to Pc 4-PDT. Thus, the greater killing by Pc 4-PDT in Jurkat compared with A431 cells correlated with greater Bcl-2 photodamage and more strongly to the more extensive Mcl-1 degradation. Pc 4-PDT may offer therapeutic advantages in targeting inflammatory cells over normal keratinocytes in the treatment of T-cell-mediated skin diseases, such as cutaneous lymphomas, dermatitis, lichenoid tissue reactions and psoriasis, and it will be instructive to evaluate the role of Bcl-2 family proteins, especially Mcl-1, in the therapeutic response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.