Abstract

BackgroundAnimals and plants diverged over one billion years ago and evolved unique mechanisms for many cellular processes, including cell death. One of the most well-studied cell death programmes in animals, apoptosis, involves gradual cell dismantling and engulfment of cellular fragments, apoptotic bodies, through phagocytosis. However, rigid cell walls prevent plant cell fragmentation and thus apoptosis is not applicable for executing cell death in plants. Furthermore, plants are devoid of the key components of apoptotic machinery, including phagocytosis as well as caspases and Bcl-2 family proteins. Nevertheless, the concept of plant “apoptosis-like programmed cell death” (AL-PCD) is widespread. This is largely due to superficial morphological resemblances between plant cell death and apoptosis, and in particular between protoplast shrinkage in plant cells killed by various stimuli and animal cell volume decrease preceding fragmentation into apoptotic bodies.ResultsHere, we provide a comprehensive spatio-temporal analysis of cytological and biochemical events occurring in plant cells subjected to heat shock at 40–55 °C and 85 °C, the experimental conditions typically used to trigger AL-PCD and necrotic cell death, respectively. We show that cell death under both conditions was not accompanied by membrane blebbing or formation of apoptotic bodies, as would be expected during apoptosis. Instead, we observed instant and irreversible permeabilization of the plasma membrane and ATP depletion. These processes did not depend on mitochondrial functionality or the presence of Ca2+ and could not be prevented by an inhibitor of ferroptosis. We further reveal that the lack of protoplast shrinkage at 85 °C, the only striking morphological difference between cell deaths induced by 40–55 °C or 85 °C heat shock, is a consequence of the fixative effect of the high temperature on intracellular contents.ConclusionsWe conclude that heat shock-induced cell death is an energy-independent process best matching definition of necrosis. Although the initial steps of this necrotic cell death could be genetically regulated, classifying it as apoptosis or AL-PCD is a terminological misnomer. Our work supports the viewpoint that apoptosis is not conserved across animal and plant kingdoms and demonstrates the importance of focusing on plant-specific aspects of cell death pathways.

Highlights

  • Animals and plants diverged over one billion years ago and evolved unique mechanisms for many cellular processes, including cell death

  • heat shock (HS)-induced plant cell death is morphologically distinct from apoptosis One of the earliest hallmarks of apoptosis is Apoptotic volume decrease (AVD) [79, 80], followed by blebbing of the plasma membrane (PM), nuclear segmentation and fragmentation of the cell into apoptotic

  • The high osmotic pressure of Conclusions This study draws attention to the existing disagreements in plant cell death research community about the existence of apoptosis in plants and emphasizes the need for in-depth investigation of plant-specific regulated cell death (RCD) features, which will hopefully boost our understanding of the evolution of eukaryotic cell death machinery

Read more

Summary

Introduction

Animals and plants diverged over one billion years ago and evolved unique mechanisms for many cellular processes, including cell death. One of the most well-studied cell death programmes in animals, apoptosis, involves gradual cell dismantling and engulfment of cellular fragments, apoptotic bodies, through phagocytosis. The concept of plant “apoptosis-like programmed cell death” (AL-PCD) is widespread. This is largely due to superficial morphological resemblances between plant cell death and apoptosis, and in particular between protoplast shrinkage in plant cells killed by various stimuli and animal cell volume decrease preceding fragmentation into apoptotic bodies. Programmed cell death (PCD), a subcategory of RCD intimately associated with normal development, counteracts cell proliferation by removing aged cells and plays an essential role in morphogenesis by eliminating surplus cells and shaping new structures [2,3,4,5]. To enable accurate comparison of cell death in animal and plant kingdoms, we apply here the more inclusive term RCD to plants as well

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call