Abstract
Aim: We aimed to reveal the role of doxorubicin (Dox), melatonin (Mel) and transient receptor potential Vanilloid 1 (TRPV1) channels in bone and cartilage cancer cells during the treatment process. Human Bone Osteosarcoma (Saos-2/An1) and Human Chondrosarcoma (Hs 819.T) cell lines were used to prepare in-vitro experiment models. Methods: Both cell lines were cultured at 37°C. We have separated each cell line into five groups as follows: Controls, Dox, Dox+Capsazepine (Cpz), Dox+Melatonin (Mel), and combined Dox+Mel+Cpz given group. Capsaicin and capsazepine were added to cell culture mediums to activate or inactivate the TRPV1 channels, respectively. Cytosolic calcium, apoptosis, intracellular reactive oxygen, mitochondrial depolarization, caspase-3 and caspase-9 levels were measured. Results: Increased apoptotic activity was detected in doxorubicin given cell lines (Group II) when compared with the controls (p˂0.001). There was also a significantly higher apoptotic level in Dox+Mel group (Group IV), when compared with only Dox given group (p˂0.001). TRPV1 inhibition applied groups (Group III and V) have had lower apoptotic levels than other drug administered groups (p˂0.001). Conclusion: This study has indicated that apoptotic effects of Dox and Mel on both osteosarcoma and chondrosarcoma were strictly associated to TRPV1 channels, and that TRPV1 channels played an important role in whole mitochondria dependent pathways of apoptosis, which in turn may lead to increased intracellular Ca+2 levels and mitochondrial depolarization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.