Abstract

We have investigated the cytotoxic activity, the induction of apoptosis, and the interstrand cross-linking efficiency in the A2780cisR ovarian tumor cell line, after replacement of the two NH3 nonleaving groups in trans-[PtCl2(NH3)2] (trans-DDP) by dimethylamine and isopropylamine. The data show that trans-[PtCl2(NH(CH)2)(NHCH(CH3)2)] is able to circumvent resistance to cis-[PtCl2(NH3)2] (cis-DDP, cisplatin) in A2780cisR cells. In fact, trans-[PtCl2(NH(CH3)2)(NHCH(CH3)2)] shows a cytotoxic potency higher than that of cis-DDP and trans-DDP, with the mean IC50 values being 11, 58, and 300 microM, respectively. In addition, at equitoxic doses (concentrations of the platinum drugs equal to their IC50 values) and after 24 hours of drug treatment, the level of induction of apoptosis by trans-[PtCl2(NH(CH3)2)(NHCH(CH3)2)] is twice that produced by cis-DDP. Under the same experimental conditions, trans-DDP does not induce significant levels of apoptosis in A2780cisR cells. After 24 hours of incubation of A2780cisR cells at concentrations equal to the IC0o value of the platinum drugs, the level of DNA interstrand cross-links (ICLs) induced by trans-[PtCI2(NH(CH)2)(NHCH(CH3)] is two and three times higher, respectively, than those induced by cis-DDP and trans-DDP. We also found that trans-[PtCl2(NH(CH3)2)(NHCH(CH3)2)] formed DNA ICLs between guanine and complementary cytosine. We propose that, in A2780cisR cells, the induction of apoptosis by trans-[PtCl2(NH(CH3)2)(NHCH(CH3)2)] is related to its greater ability (relative to cis-DDP and trans-DDP) to form DNA ICLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call