Abstract
Oxidants are known to induce cell apoptosis. Because oxidants also elicit redox imbalance, it is difficult to distinguish the direct effects of cellular redox from that of oxidants. This study tests the hypothesis that induction of redox imbalance independent of reactive oxygen species (ROS), can induce cell apoptosis in a mitotic competent, undifferentiated cell line, PC-12. Cells grown in standard DMEM containing 25 mM glucose were treated with diamide, a thiol oxidant, at a concentration that did not generate ROS. Diamide caused a rapid increase in oxidized glutathione (GSSG) and a loss of mitochondrial cytochrome c in 15-30 min, caspase-3 activation in 2 h, and apoptosis in 24 h. N-Acetyl cysteine attenuated GSSG elevation and diamide-induced apoptosis. Incubation of cells in 5 mM glucose or inhibition of the pentose phosphate pathway maintained GSSG elevation and accelerated cell apoptosis. Collectively, these results show that loss of redox balance is an upstream event that kinetically preceded mitochondrial apoptotic signaling. A sustained redox change was not critical or necessary for apoptotic progression, but its prolongation exacerbated apoptotic death. The potentiation of apoptosis by sustained redox imbalance was correlated with decreases in NADPH supply for GSSG reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.