Abstract

Erythropoietin (Epo) inhibits apoptosis in murine proerythroblasts infected with the anemia-inducing strain of Friend virus (FVA cells). We have shown that the apoptotic process in FVA cell populations deprived of Epo is asynchronous as a result of a heterogeneity in Epo dependence among individual cells. Here we investigated whether apoptosis in FVA cells correlated with cell cycle phase or stabilization of p53 tumor suppressor protein. DNA analysis in nonapoptotic FVA cell subpopulations cultured without Epo demonstrated little change in the percentages of cells in G1,S, and G2/M phases over time. Analysis of the apoptotic subpopulation revealed high percentages of cells in G1 and S, with few cells in G2/M at any time. When cells were sorted from G1 and S phases prior to culture without Epo, apoptotic cells appeared at the same rate in both populations, indicating that no prior commitment step had occurred in either G1 or S phase. Steady-state wild-type p53 protein levels were very low in FVA cells compared with control cell lines and did not accumulate in Epo-deprived cultures; however, p53 protein did accumulate when FVA cells were treated with the DNA-damaging agent actinomycin D. These data indicate that erythroblast apoptosis caused by Epo deprivation (i) occurs throughout G1 and S phases and does not require cell cycle arrest, (ii) does not have a commitment event related to cell cycle phase, and (iii) is not associated with conformational changes or stabilization of wild-type p53 protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.