Abstract
Changes in intracellular ion concentrations have been correlated with the activation of an endogenous endonuclease and thus internucleosomal DNA cleavage during apoptosis in many cell types. We investigated whether intracellular pH could play a significant role in apoptotic initiation and progression in C3H-10T1/2 cells, a cell strain that does not exhibit double-stranded DNA cleavage during apoptosis. Protein kinase C and the Na+/H+ antiporter, known regulators of intracellular pH, also were assessed for their involvement in apoptosis of C3H-10T1/2 cells. When a H+ ionophore was used to clamp intracellular pH to 6.0 or below, a significant level of apoptosis was induced in these cells within 6 h, whereas clamping at pH 6.75 did not induce significant amounts of apoptosis until 36 h after acidification. The acidified cells exhibited classic apoptotic morphology and chromatin condensation, similar to serum withdrawn cells, but failed to show internucleosomal DNA cleavage with electrophoresis of genomic DNA. Our results also suggest that the 12-O-tetradecanoylphorbol-13-acetate (TPA)-mediated inhibition of apoptosis in serum withdrawn C3H-10T1/2 cells functions through a sequential activation of protein kinase C and the Na+/H+ antiporter; thus, an alkalinization or an inhibition of acidification is involved in this apoptotic block. Serum withdrawal itself does not appear to act through a negative effect on either protein kinase C or the Na+/H+ antiporter. TPA was also capable of inhibiting the apoptosis induced by specific inhibitors of protein kinase C and the Na+/H+ antiporter, but the inhibition was successful only if the TPA was administered at least 20 min prior to the addition of the enzyme inhibitor. These results indicate that apoptosis in C3H-10T1/2 cells follows a pathway that involves intracellular acidification, but is independent of detectable endonuclease activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.