Abstract

Apoptosis is a regulated cell death that depends on caspases. It has mainly been studied as a mechanism for the removal of unwanted cells. However, apoptotic cells can induce fate or behavior changes of their neighbors and thereby participate in development. Here, we address the functions of apoptosis during metamorphosis of the cnidarian Hydractinia symbiolongicarpus. We describe the apoptotic profile during metamorphosis of the larva and identify Caspase3/7a, but no other executioner caspases, as essential for apoptosis in this context. Using pharmacological and genetic approaches, we find that apoptosis is required for normal head development. Inhibition of apoptosis resulted in defects in head morphogenesis. Neurogenesis was compromised in the body column of apoptosis-inhibited animals but there was no effect on the survival or proliferation of stem cells, suggesting that apoptosis is required for cellular commitment rather than for the maintenance of their progenitors. Differential transcriptomic analysis identifies TRAF genes as downregulated in apoptosis-inhibited larvae and functional experiments provide evidence that they are essential for head development. Finally, we find no major role for apoptosis in head regeneration in this animal, in contrast to the significance of apoptosis in Hydra head regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.