Abstract
In mammalian ovaries, loss of over two-thirds of germ cells happens due to cell death. Nonetheless, the exact mechanism of cell death has yet to be determined. The present basic practical study was designed to detect 3 types of programmed cell death, namely apoptosis, autophagy, and necrosis, in murine embryonic gonadal ridges and neonatal ovaries. Twenty gonadal ridges and ovaries from female mouse embryos 13.5 days post coitum and newborn mice 1 day postnatal were collected. The TUNEL assay was performed to evaluate apoptosis. The interplay of autophagy was evaluated by immunohistochemistry for beclin-1. Necrotic cell death was analyzed by propidium iodide (PI) staining. The count and percentage of the labeled oocytes in the gonadal ridges and ovaries were evaluated and compared using the independent t test and one-way ANOVA. A P value less than 0.05 was considered statistically significant. We detected TUNEL-positive reaction in the embryonic germ cells and in the small and large oocytes of the neonatal ovaries. The germ cells and small oocytes reacted to beclin-1. PI absorption was detected in the embryonic germ cells and the large oocytes of the neonatal ovaries, but not in the small oocytes. The percentage of the TUNEL-positive and PI-labeled oocytes in the gonadal ridges was significantly higher than that in the neonatal ovaries (P<0.01 and P=0.01). In the neonatal ovaries, the percentage of the beclin-1-labeled oocytes was significantly higher than that in the embryonic phase (P<0.01). We showed that all 3 types of programmed cell death, namely apoptosis, autophagy, and necrosis, accounted for embryonic and neonatal germ-cell loss. Our observations demonstrated a potential role for necrosis, particularly in the embryonic gonadal ridge in comparison to the neonatal ovary, in mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.