Abstract
The role of apoptosis in EtOH-induced liver injury has not been investigated much. Therefore, the question whether apoptosis is a contributory factor to alcoholic liver disease remains to be answered. The purpose of this study was to characterize the liver apoptotic response in a murine model of alcohol-enhanced lipopolysaccharide (LPS) hepatotoxicity. Mice were fed an alcohol-containing liquid diet for 49 days followed by an acute LPS challenge. The liver state was judged on the basis of histological appearance, plasma liver enzyme activity (alanine:2-oxoglutarate and aspartate:2-oxoglutarate aminotransferases, as markers of hepatocytolysis), and plasma hyaluronan levels (as a marker of the sinusoidal endothelial cell scavenging function). The liver apoptotic response was assessed by DNA fragmentation (TUNEL procedure), and caspases-3 and -8 activity. To determine if ceramide played a role in the liver apoptotic response, the activity of acidic sphingomyelinase and tissue content of ceramide were also quantified. Alcohol exposure induced fat accumulation and sensitized the liver to LPS injurious effects. Plasma liver enzyme activity was elevated by alcohol and this effect was potentiated by LPS. Liver apoptosis was augmented by both alcohol and LPS treatment as reflected by high frequency of positive TUNEL staining nuclei and by an increased activity of caspase-3 and -8. Acidic sphingomyelinase activity was also increased and it was associated with an elevated tissue content of ceramide. In addition, LPS also increased plasma TNF-alpha levels. These changes were accompanied by elevated plasma hyaluronan, reflecting an impaired sinusoidal endothelial cell scavenging function. These results provide a more complete description of the liver apoptotic response to both alcohol and LPS and may constitute the basis for further mechanistic studies on a possible role apoptosis may play in alcoholic liver injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.