Abstract

The predominance of sex in eukaryotes, despite the high costs of meiosis and mating, is still an evolutionary enigma. Many theories have been proposed, none of them being conclusive on its own, and they are partly not well applicable to land plants. Sexual reproduction is obligate in embryophytes for the great majority of species. This review will compare the main forms of sexual and asexual reproduction in ferns and angiosperms, based on the generation cycling of sporophyte and gametophyte (leaving vegetative propagation aside). The benefits of sexual reproduction for maintenance of genomic integrity compared to asexuality will be discussed in the light of developmental, evolutionary, genetic and phylogenetic studies. Asexual reproduction represents modifications of the sexual pathway, with various forms of facultative sexuality. For sexual land plants, meiosis provides direct DNA repair mechanisms of oxidative damage in reproductive tissues. The ploidy alternations of meiosis-syngamy cycles, and prolonged, multicellular stages in the haploid phase in the gametophytes provide a high efficiency of purifying selection against recessive deleterious mutations. Asexual lineages might buffer effects of such mutations via polyploidy, and can purge the mutational load via facultative sexuality. The role of organelle-nuclear genome compatibility for maintenance of genome integrity is still not well understood. The costs of mating are in plants in general low because of predominant hermaphroditism. Phylogenetic patterns in the Archaeplastid clade suggest that high frequencies of sexuality in land plants are concomitant with a stepwise increase of intrinsic and extrinsic stress factors. Furthermore, expansion of genome size in land plants would increase the potential mutational load. Sexual reproduction appears to be essential for keeping long term genomic integrity, and only rare combinations of extrinsic and intrinsic factors allow for shifts to asexuality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.