Abstract

A representation of one qubit state by points in complex plane is proposed, such that the computational basis corresponds to two fixed points at a finite distance in the plane. These points represent common symmetric states for the set of quantum states on Apollonius circles. It is shown that, the Shannon entropy of one qubit state depends on ratio of probabilities and is a constant along Apollonius circles. For two qubit state and for three qubit state in Apollonius representation, the concurrence for entanglement and the Cayley hyperdeterminant for tritanglement correspondingly, are constant on the circles as well. Similar results are obtained also for n-tangle hyperdeterminant with even number of qubit states. It turns out that, for arbitrary multiple qubit state in Apollonius representation, fidelity between symmetric qubit states is also constant on Apollonius circles. According to these, the Apollonius circles are interpreted as integral curves for entanglement characteristics. The bipolar and the Cassini representations for qubit state are introduced, and their relations with qubit coherent states are established. We proposed the differential geometry for qubit states in Apollonius representation, defined by the metric on a surface in conformal coordinates, as square of the concurrence. The surfaces of the concurrence, as surfaces of revolution in Euclidean and Minkowski spaces are constructed. It is shown that, curves on these surfaces with constant Gaussian curvature becomes Cassini curves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call