Abstract

Several genetically encoded sensors have been developed to study live cell NADPH/NADP+ dynamics, but their use has been predominantly in vitro. Here, we developed an in vivo assay using the Apollo-NADP+ sensor and microfluidic devices to measure endogenous NADPH/NADP+ dynamics in the pancreatic β cells of live zebrafish embryos. Flux through the pentose phosphate pathway, the main source of NADPH in many cell types, has been reported to be low in β cells. Thus, it is unclear how these cells compensate to meet NADPH demands. Using our assay, we show that pyruvate cycling is the main source of NADP+ reduction in β cells, with contributions from folate cycling after acute electrical activation. INS1E β cells also showed a stress-induced increase in folate cycling and further suggested that this cycling requires both increased glycolytic intermediates and cytosolic NAD+. Overall, we show in vivo application of the Apollo-NADP+ sensor and reveal that β cells are capable of adapting NADPH/NADP+ redox during stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.