Abstract

A significant portion of brain-tumor patients suffer from ‘brain-tumor-related epilepsy (BTE)’ which results in depression, anxiety and hampered quality of life. Conventional anti-epileptic drugs indicate negative interaction with other drugs augmenting the poor outcome of overall therapy. Levetiracetam (LVM) has evidenced effectiveness for BTE but its hydrophilicity restricts the passage into blood-brain barrier. The majority of lipid nanoparticles fails to load hydrophilic drug sufficiently. Therefore, lipid-drug conjugates (LDC) were synthesized using stearic acid via amide bond formation confirmed by FTIR and NMR. The nanoparticles of synthesized LDC were prepared by solvent injection method followed by functionalization with Apolipoprotein E3 (ApoE3@LDC-NP). The nanoparticles were characterized by DSC, XRD, particle size (131.6 ± 1.24 nm), zeta potential (−15.6 ± 0.09 mV), and for storage stability. In-vitro release study indicated initial burst release of 20 ± 0.63 % followed by sustained release up to 30 h (66 ± 1.40 %) for ApoE3@LDC-NP. The cell-line study on HEK293 indicated no significant cytotoxic effect and greater cell uptake through U87MG cell line. The pharmacokinetic and bio-distribution study indicated 2.5-fold greater brain-targeting of ApoE3@LDC-NP as compared to LVM solution. It proved safe in the haemolysis study and exhibited the absence of tissue necrosis. Thus, ApoE3@LDC-NP might be a promising approach for effective brain-targeting of LVM for improved clinical response in BTE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call