Abstract

Partial recovery from even severe traumatic brain injury (TBI) is ubiquitous and occurs largely through unknown mechanisms. Recent evidence suggests that hippocampal neural stem/progenitor cell (NSPC) activation and subsequent neurogenesis are responsible for at least some aspects of spontaneous recovery following TBI. Apolipoprotein E (ApoE) regulates postnatal neurogenesis in the hippocampus and is therefore a putative mediator of injury-induced neurogenesis. Further, ApoE isoforms in humans are associated with different cognitive outcomes following TBI. To investigate the role of ApoE in injury-induced neurogenesis, we exposed wild-type, ApoE-deficient, and human ApoE isoform-specific (ApoE3 and ApoE4) transgenic mice crossed with nestin-green fluorescent protein (GFP) reporter mice to controlled cortical impact (CCI) and assessed progenitor activation at 2 d post-injury using unbiased stereology. GFP+ progenitor cells were increased by approximately 120% in the ipsilateral hippocampus in injured wild-type mice, compared with sham mice (p<0.01). Co-localization of GFP+ cells with bromodeoxyrudine (BrdU) to label dividing cells indicated increased proliferation of progenitors in the injured hippocampus (p<0.001). This proliferative injury response was absent in ApoE-deficient mice, as no increase in GFP+ cells was observed in the injured hippocampus, compared with sham mice, despite an overall increase in proliferation indicated by increased BrdU+ cells (86%; p<0.05). CCI-induced proliferation of GFP+ cells in both ApoE3 and ApoE4 mice but the overall response was attenuated in ApoE4 mice due to fewer GFP+ cells at baseline. We demonstrate that ApoE is required for injury-induced proliferation of NSPCs after experimental TBI, and that this response is influenced by human APOE genotype.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.