Abstract

Herein, we tested a recently proposed working model of apolipoprotein E (apoE)-mediated sulfatide metabolism/trafficking/homeostasis with two well-characterized amyloid precursor protein (APP) transgenic (Tg) animal models of Alzheimer's disease (AD) (i.e., APP(V717F) and APPsw) on a wild-type murine apoE background or after being bred onto an Apoe(-/-) background. As anticipated, lipidomics analysis demonstrated that the sulfatide levels in brain tissues were reduced beginning at approximately 6 months of age in APP(V717F) Tg, Apoe(+/+) mice and at 9 months of age in APPsw Tg, Apoe(+/+) mice relative to their respective non-APP Tg littermates. This reduction increased in both APP Tg mice as they aged. In contrast, sulfatide depletion did not occur in APP Tg, Apoe(-/-) animals relative to the Apoe(-/-) littermates. The lack of sulfatide depletion in APP Tg, Apoe(-/-) mice strongly supports the role of apoE in the deficient sulfatide content in APP Tg, Apoe(+/+) mice. Collectively, through different animal models of AD, this study provides evidence for an identified biochemical mechanism that may be responsible for the sulfatide depletion at the earliest stages of AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.