Abstract
The incorporation of radioactive alpha tocopherol by various brain regions of wild type and apolipoprotein E (apoE)-deficient mice was investigated. Labeled tocopherol was injected into the lateral cerebral ventricles of 11 weeks old, male mice. Radioactive cholesterol injected simultaneously was used as an internal standard to account for experimental variability. Most areas of the brain of apoE-deficient mice took up less of alpha tocopherol per mg of protein than wild type animals. However, specific activity of alpha tocopherol was higher in cerebellum, pons, hypothalamus, midbrain and cerebral cortex in apoE-deficient brains than the wild type. This could be due to (a) the lower levels of alpha tocopherol in apoE-deficient brain and (b) reductions in the clearance and transport of tocopherol (possibly mediated by apoE). Tocopherol uptake by hippocampus was unusual since it was lower in apoE deficiency whether the data were expressed as specific activity or per mg of protein. Nearly all of the injected alpha tocopherol remained unchanged in the brains of both apoE-deficient and wild type animals suggesting low turnover. Overall, the current data reinforce the hypothesis that apoE is a key protein involved with the transport and/or retention of alpha tocopherol in brain.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.