Abstract

Background and aimsThe apolipoprotein A-I mimetic peptide D-4F, among its anti-atherosclerotic effects, improves vasodilation through mechanisms not fully elucidated yet. MethodsLow-density lipoprotein (LDL) receptor null (LDLr−/−) mice were fed Western diet with or without D-4F. We then measured atherosclerotic lesion formation, endothelial nitric oxide synthase (eNOS) phosphorylation and its association with heat shock protein 90 (HSP90), nitric oxide (NO) and superoxide anion (O2•-) production, and tetrahydrobiopterin (BH4) and GTP-cyclohydrolase 1 (GCH-1) concentration in the aorta. Human umbilical vein endothelial cells (HUVECs) and aortas were treated with oxidized LDL (oxLDL) with or without D-4F; subsequently, BH4 and GCH-1 concentration, NO and O2•- production, eNOS association with HSP90, and endothelium-dependent vasodilation were measured. ResultsUnexpectedly, eNOS phosphorylation, eNOS-HSP90 association, and O2•- production were increased, whereas BH4 and GCH-1 concentration and NO production were reduced in atherosclerosis. D-4F significantly inhibited atherosclerosis, eNOS phosphorylation, eNOS-HSP90 association, and O2•- generation but increased NO production and BH4 and GCH-1 concentration. OxLDL reduced NO production and BH4 and GCH-1 concentration but enhanced O2•- generation and eNOS association with HSP90, and impaired endothelium-dependent vasodilation. D-4F inhibited the overall effects of oxLDL. ConclusionsHypercholesterolemia enhanced uncoupled eNOS activity by decreasing GCH-1 concentration, thereby reducing BH4 levels. D-4F reduced uncoupled eNOS activity by increasing BH4 levels through GCH-1 expression and decreasing eNOS phosphorylation and eNOS-HSP90 association. Our findings elucidate a novel mechanism by which hypercholesterolemia induces atherosclerosis and D-4F inhibits it, providing a potential therapeutic approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call