Abstract

Kidney risk variants (KRVs) in the APOL1 gene are associated with mitochondrial dysfunction. However, the molecular spectrum of metabolites affected by the G1 and G2 KRVs, and the downstream mitochondrial pathways they affect, remain unknown. We performed a metabolomics analysis using HEK293 Tet-on cells conditionally expressing APOL1 G0, G1, and G2 KRVs to determine the patterns of metabolites and pathways potentially involved in nephropathy. The Welch two-sample t test, matched-pairs t test, and two-way repeated measures ANOVA were used to identify differential metabolites. Random forest, a supervised classification algorithm that uses an ensemble of decision trees, and the mean-decrease-accuracy metric were applied to prioritize top metabolites. Alterations in the tricarboxylic acid cycle, increased fatty acid oxidation, and compromised redox homeostasis were the major pathways affected by overexpression of APOL1 KRVs. Impairment of mitochondrial membrane respiratory chain complex I appeared to account for critical metabolic consequences of APOL1 KRVs. This finding supports depletion of the mitochondrial membrane potential, as has been reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.