Abstract

Abstract Our recent work globally optimized two classes of large-scale pooling problems: a generalized pooling problem treating the network topology as a decision variable and an extended pooling problem incorporating environmental regulations into constraints. The pooling problems were optimized using a piecewise linear scheme that activates appropriate under- and overestimators with a number of binary decision variables that scales linearly with the number of segments in the piecewise relaxation. Inspired by recent work (Vielma & Nemhauser, 2010; Vielma, Ahmed, & Nemhauser, 2010b), we introduce a formulation for the piecewise linear relaxation of bilinear functions with a logarithmic number of binary variables and computationally compare the performance of this new formulation to the best-performing piecewise relaxations with a linear number of binary variables. We have unified our work by developing APOGEE, a computational tool that globally optimizes standard, generalized, and extended pooling problems. APOGEE is freely available to the scientific community at helios.princeton.edu/APOGEE/.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.