Abstract

A central pathogenic feature of neurodegenerative diseases and neurotrauma is the death of neurons. A mechanistic understanding of the factors and conditions that induce the dysfunction and death of neurons is essential for devising effective treatment strategies against neuronal loss after trauma or during aging. Because Apolipoprotein E (ApoE) is a major risk factor for several neurodegenerative diseases, including Alzheimer's disease , a direct or indirect role of ApoE receptors in the disease process is likely. Here we have used gene targeting in mice to investigate possible roles of ApoE receptors in the regulation of neuronal survival. We demonstrate that a differentially spliced isoform of an ApoE receptor, ApoE receptor 2 (Apoer2), is essential for protection against neuronal cell loss during normal aging. Furthermore, the same splice form selectively promotes neuronal cell death after injury through mechanisms that may involve serine/threonine kinases of the Jun N-terminal kinase (JNK) family. These findings raise the possibility that ApoE and its receptors cooperatively regulate common mechanisms that are essential to neuronal survival in the adult brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call