Abstract
Synthesis of microsomal cytochrome P-450 in rat liver requires synthesis of apoprotein in rough endoplasmic reticulum and of heme in mitochondria. Dissociation of apoprotein and heme synthesis by concomitant treatment of rats with inducers of cytochrome P-450 (i.e., phenobarbital) and inhibitors of heme synthesis (i.e., cobalt) resulted in a relative excess of apocytochrome P-450. Under these circumstances, it was possible to reconstitute the holocytochrome by addition of hemin in vitro. The holocytochrome was detected spectrophotometrically by its CO-binding properties and functionally by its increased oxidative activity. Heme-mediated reconstitution was most efficient in cell fractions rich in mitochondria-rough endoplasmic reticulum complexes (640 times g fraction), suggesting that the structural association of these two organelles may represent a functional unit essential for the synthesis of holocytochrome P-450. These findings indicate that phenobarbital-mediated induction of apocytochrome P-450 is independent of heme synthesis. It is suggested that synthesis of the apocytochrome may be the primary and rate-limiting event in the formation of cytochrome P-450.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.