Abstract

Atherosclerosis is a chronic inflammatory disease with lipid accumulation. Apolipoprotein C3 (APOC3), which is an important regulator of human lipid metabolism, is associated with multiple vascular mechanisms in atherosclerosis and proinflammatory responses. We have previously reported that the expression of inflammatory cytokine TNF-α is elevated in human endothelial cells (HUVECs) after APOC3 treatment. This study investigates the APOC3 signaling pathway involved in TNF-α-mediated expression of JAM-1 in HUVECs. Cultured HUVECs were exposed to APOC3 (50 μg/ml) for 16 h. Mechanistic studies were carried out by silencing TNF-α gene with lentiviral TNF-α-shRNA. Our study was based on the eight signaling pathway inhibitors to block the effect of APOC3 in HUVECs. The expression of JAM-1 was determined by qRT-PCR, Western blotting, and flow cytometry. IKK2 degradation and NF-κB p65 phosphorylation were determined by Western blotting. Our results showed that APOC3 significantly promoted the TNF-α-induced expression of JAM-1 in HUVECs. Inhibiting APOC3 reversed the TNF-α-induced overexpression of JAM-1. Moreover, APOC3 induced the expression of NF-κB p65 and degraded IκB. In conclusion, APOC3 promoted the expression of JAM-1 via the NF-κB, IKK2, and PI3K signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call