Abstract

Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G (hA3G), a member of the APOBEC family, was described as an anti-HIV-1 restriction factor, deaminating reverse transcripts of the HIV-1 genome. Several types of cancer cells that express high levels of A3G, such as diffuse large B-cell lymphoma cells and glioblastomas, show enhanced cell survival after ionizing radiation and chemotherapy treatments. Previously, we showed that hA3G promotes (DNA) double-strand breaks repair in cultured cells and rescues transgenic mice from a lethal dose of ionizing radiation. Here, we show that A3G rescues cells from the detrimental effects of DNA damage induced by ultraviolet irradiation and by combined bromodeoxyuridine and ultraviolet treatments. The combined treatments stimulate the synthesis of cellular proteins, which are exclusively associated with A3G expression. These proteins participate mainly in nucleotide excision repair and homologous recombination DNA repair pathways. Our results implicate A3G inhibition as a potential strategy for increasing tumor cell sensitivity to genotoxic treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.