Abstract

APOBEC3G (A3G)/APOBEC3F (A3F) are two members of APOBEC3 cytidine deaminase subfamily. Although they potently inhibit the replication of vif-deficient HIV-1, this mechanism is still poorly understood. Initially, A3G/A3F were thought to catalyze C-to-U transitions on the minus-strand viral cDNAs during reverse transcription to disrupt the viral life cycle. Recently, it was found more likely that A3G/A3F directly interrupts viral reverse transcription or integration. In addition, A3G/A3F are both found in the high-molecular-mass complex in immortalized cell lines, where they interact with a number of different cellular proteins. However, there has been no evidence to prove that these interactions are required for A3G/A3F function. Here, we studied A3G/A3F-restricted HIV-1 replication in six different human T cell lines by infecting them with wild-type or vif-deficient HIV-1. Interestingly, in a CEM-derived cell line CEM-T4, which expresses high levels of A3G/A3F proteins, the vif-deficient virus replicated as equally well as the wild-type virus, suggesting that these endogenous antiretroviral genes lost anti-HIV activities. It was confirmed that these A3G/A3F genes do not contain any mutation and are functionally normal. Consistently, overexpression of exogenous A3G/A3F in CEM-T4 cells still failed to restore their anti-HIV activities. However, this activity could be restored if CEM-T4 cells were fused to 293T cells to form heterokaryons. These results demonstrate that CEM-T4 cells lack a cellular cofactor, which is critical for A3G/A3F anti-HIV activity. We propose that a further study of this novel factor will provide another strategy for a complete understanding of the A3G/A3F antiretroviral mechanism.

Highlights

  • Cytidine deaminases are RNA-editing enzymes that target cytosines for conversion to uracils (C-to-U)

  • Cytidine deaminases are host enzymes that remove the amino group from the cytidine base on single-stranded DNA or RNA, resulting in a replacement of the cytidine with a uracil

  • It has been well documented that APOBEC1 and activation-induced deaminase (AID) play very important roles in protein metabolism and immune response via this mechanism

Read more

Summary

Introduction

Cytidine deaminases are RNA-editing enzymes that target cytosines for conversion to uracils (C-to-U). They belong to the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) family, which includes activation-induced deaminase (AID), APOBEC1 (A1), APOBEC2 (A2), a group of APOBEC3 (A3), and APOBEC4 (A4) in humans [1]. It has the capability to introduce a premature termination codon on apolipoprotein B100 (apoB) mRNA by C-to-U editing to produce a truncated form of this protein [2]. It edits specific ‘‘hotspots’’ on immunoglobulin gene loci in activated B cells to direct somatic hypermutation and isotype class switching to generate different antibodies [3]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.