Abstract

Obstructive sleep apnea is associated with significant cardiovascular disease, yet little is known about the effects of OSA on pulmonary microvascular perfusion. In a recent report, we showed that pulmonary microvascular perfusion was significantly mal‐distributed in anesthetized, spontaneously breathing rats exposed to five episodes of obstructive apnea. We quantified microvascular perfusion by analyzing trapping patterns of 4 μm diameter fluorescent latex particles infused into the pulmonary circulation after the last episode. We could not determine if the perfusion maldistribution was due to the effects of large subatmospheric intrapleural pressures during apnea, or to precapillary OSA hypoxic vasoconstriction. To address this, we repeated these studies using isolated, buffer‐perfused rat lungs (P pulm art, 10 cm H2O) ventilated in a chamber (−5 to −15 cm H2O, 25 breaths/min; P trachea = 0). We simulated apnea by clamping the trachea and cycling the chamber pressures between −25 and −35 cm H2O for five breaths. After five apnea episodes, we infused 4 μm diam. fluorescent latex particles into the pulmonary artery. The number of particles recovered from the venous effluent was 74% greater in nonapneic isolated lungs compared to apneic lungs (P ≤ 0.05). Apneic lungs also had perfusion maldistributions that were 73% greater than those without apnea (P ≤ 0.05). We conclude that simulated apnea in isolated, perfused rat lungs produces significantly greater particle trapping and microvascular perfusion maldistribution than in nonapneic isolated lungs. We believe these effects are due to the large, negative intrapleural pressures produced during apnea, and are not due to hypoxia.

Highlights

  • Obstructive sleep apnea (OSA) is a significant public health problem affecting an estimated 20 million people in the United States (Young et al 1993)

  • We showed that pulmonary microvascular perfusion was significantly maldistributed in anesthetized, spontaneously breathing rats exposed to obstructive apnea (Watson et al 2012)

  • Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society

Read more

Summary

Introduction

Obstructive sleep apnea (OSA) is a significant public health problem affecting an estimated 20 million people in the United States (Young et al 1993). We produced apnea by clamping each rat’s tracheal cannula for 10 breaths after which it was released to allow the animals to again breathe spontaneously. We repeated this each 20 sec for a total of 5 apneic episodes. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.