Abstract
News is information about facts or opinions that are interesting to know. News can be obtained from various media such as newspapers and the internet. As is well known, news has various topics, such as politics, sports and others. There is also the same story written with the addition of a little information. This causes it to take more time to get the headline of the news. Therefore we need a system for news clustering using the K-Means method and news summarizing using the Maximum Marginal Relevance (MMR) method in order to obtain information from news more easily and efficiently. News that is processed in the form of a collection of files (multi document) with the extension txt. The summarization process goes through the text preprocessing stage, which consists of sentence segmentation, case folding, tokenizing, filtering, stemming. The next step is TF-IDF calculation to calculate word weight then Cosine Similarity to calculate the similarity between documents. After that, enter the K-Means stage for clustering division and proceed with determining the summary with MMR. Based on the results testing that has been done, this application is running well, the results of clustering and summarizing news can make it easier for users to get news summaries from some similar news.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.