Abstract

En este proyecto se hace una diferenciación entre personas a travez de diferentes parametros como edad,sexo,nivel educativo entre otros,para tratar de calcular a cuanto podria asender su salario. Este problema es importante a resolver por que así una persona podría predecir su futuros ingresos a través de las decisiones que tomaría en el presente, como por ejemplo hasta qué grado de educación debe recibir y cuando ya comenzar a trabajar para obtener experiencia. Nuestro procedimiento para resolver este problema han sido dos análisis estadísticos ,el primero regresión lineal y un árbol de decisión para poder hacer una comparativa entre estos, las hemos probado usando herramientas como Colab (Python) y un dataset. Nuestra población de nuestro trabajo fue de 32000 registros (filas).Los resultados fueron que a través del árbol de decisión hubo una precisión de 0.879 y un accuracy de 0.817 .Y con respecto a la regresión logística obtuvimos una precisión de 0.80 cuando para el sueldo <=50K y 0.72 cuando el sueldo es >50K, el accuracy obtenido es de 0.7912. Dando por conclusión que entre estas dos herramientas nos quedamos con el Árbol de decisión.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.