Abstract

Extraction and characterization of natural products provide the opportunity to expand our arsenal of drug candidates against a wide range of diseases including cancer and inflammatory disorders. Previous studies have shown bee venom to have immense potential as an anti-inflammatory drug candidate. In this study, we focused on the venom of Apis mellifera anatoliaca and characterized its content by HPLC. An in vitro inflammation model based on lipopolysaccharide (LPS)-stimulated mammalian macrophages was utilized to examine the venom's anti-inflammatory potential. Additionally, its antiproliferative activity was evaluated in vitro against a human glioblastoma cell line. Based on the TNF, IL6, GMCSF, and IL12p40 pro-inflammatory cytokine production level in LPS-induced macrophages, venom-treated groups showed substantial decrease in the inflammatory action compared to untreated LPS-stimulated macrophages. When the cells were analyzed for viability, the venom did not have any cytotoxic effect on the macrophages at the concentration ranges that were utilized. Moreover, IC50 value of the venom was above 60µg/mL on glioblastoma cancer cell line. These results suggest that the Apis mellifera anatoliaca venom does not have anticancer drug candidate potential, whereas it can efficiently be used against inflammatory and autoimmune disorders. To our knowledge, this is the first study to specifically examine the effect of anti-inflammatory activity of Apis mellifera anatoliaca venom on macrophages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call