Abstract

Chinese hamster ovary (CHO) cells are expected to acquire the ability to produce higher recombinant therapeutic protein levels using various strategies. Genetic engineering targeting the cell cycle and autophagy pathways in the regulation of cell death in CHO cell cultures has received attention for enhancing the production of therapeutic proteins. In this study, we examined the small-molecule compound apilimod, which was found to have a positive influence on recombinant protein expression in CHO cells. This was confirmed by selective blocking of the cell cycle at the G0/G1 phase. Apilimod treatment resulted in decreased expression of cyclin-dependent kinase 3 (CDK3) and Cyclin C and increased expression of cyclin-dependent kinase suppressor p27Kip1, which are critical regulators of G1 cell cycle progression and important targets controlling cell proliferation. Furthermore, total transcription factor EB (TFEB) was lower in apilimod-treated CHO cells than in control cells, resulting in decreased lysosome biogenesis and autophagy with apilimod treatment. These multiple effects demonstrate the potential of apilimod for development as a novel enhancer for the production of recombinant proteins in CHO cell engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.