Abstract

Obesity is a growing epidemic among reproductive-age men, which can cause and exacerbate male infertility by means of associated comorbidities, endocrine abnormalities, and direct effects on the fidelity and throughput of spermatogenesis. A prominent consequence of male obesity is a reduction in testosterone levels. Natural products have shown tremendous potential anti-obesity effects in metabolic diseases. This study aimed to investigate the potential of apigenin (AP) to alleviate testicular dysfunction induced by a high-fat diet (HFD) and to investigate the underlying mechanisms, focusing on endoplasmic reticulum stress (ERS) and testosterone synthesis. A murine model of obesity was established using HFD-fed mice. The effects of AP on obesity, lipid metabolism, testicular dysfunction, and ERS were assessed through various physiological, histological, and molecular techniques. Administration of AP (10 mg/kg) ameliorated HFD-induced obesity and testicular dysfunction in a mouse model, as evidenced by decreased body weight, improved lipid profiles and testicular pathology, and restored protein levels related to testosterone. Furthermore, in vitro studies demonstrated that AP relieved ERS and recovered testosterone synthesis in murine Leydig cells (TM3) treated with free fatty acids (FFAs). It was also observed that AP rescued testosterone synthesis enzymes in TM3 cells, similar to that observed with the inhibitor of the PERK pathway (GSK2606414). In addition, ChIP, qPCR, and gene silencing showed that the C/EBP homologous protein (CHOP) bound directly to the promoter region of steroidogenic STAR and negatively modulated its expression. Collectively, AP has remarkable potential to alleviate HFD-induced obesity and testicular dysfunction. Its protective effects are attributable partly to mitigating ERS and restoring testosterone synthesis in Leydig cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call